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1. INTRODUCTION 

The genre of computer “action” games typically involve a player 
with control over a single game character. To succeed in such 
games, players typically require hand-eye coordination and the 
ability to react quickly to new information. Although real-time 
strategy (RTS) games also require quick reaction to information, 
RTS games generally do not emphasize hand-eye coordination 
and fine-tuned control over player movement. We use the term 
physics-based to describe action games that take place in worlds 
that are loosely governed by the laws of physics. In physics-based 
games, the positions of various game objects are continuously 
updated according to some velocity, acceleration, or collision 
force. 

!  
Figure 1: Split screen view of the Tunnel Wars game 

Most published research in the development of computer-
game-playing agents has been focused towards RTS games, with 
particular emphasis on the popular StarCraft series of RTS games 
(Blizzard Entertainment, 1998–present). As is exemplified by 
(Stanescu et. al., 2014), successful RTS agents often employ a 
hierarchy of solution space searches – one for each strategic 
aspect of gameplay.  Such systems are often divided into “layers”: 1

the topmost layer directs the behaviors of levels beneath through 
the selection of general strategy, while the bottommost layer solve 
specific aspects of gameplay and produce actions. In this paper we 
apply a similar layer-based divide-and-conquer approach to 
physics-based action games. Our method employs three layer: a 
strategy-selection layer, navigation layer, and action layer, each of 
which will be discussed in detail. 

We test the methodology on the Tunnel Wars action game 
(www.tunnelwars.com), which was reworked to provide an 
abstraction of the state space. The Tunnel Wars game involves 
competition between two characters, originally both controlled by 
keyboard input. The characters can move continuously in the left 
and right directions and are pulled downwards by gravity, but can 
jump if they are touching the ground or walls. A character can also 
fire projectiles to reduce the health of the opponent, or to tunnel 
through the 30x46 destructible grid of ground blocks that the 

game is set upon. If a player’s character runs out of health then   
then they lose the game, and their opponent wins. Despite the 
simple mechanics of the game, complex strategies are often 
needed to win due to the many configurations of tunnels that can 
arise. The Tunnel Wars website contains further details. It is worth 
noting that the gameplay is nondeterministic, with random 
outcomes influencing the motion of some projectiles and power-
up spawning. 

In applying and training our method with the Tunnel Wars 
game, our aimed was to achieve a solution the was both runnable 
in real time and effective in competing against human players. 

2. METHOD SUMMARY 

The proposed methodology operates using a hierarchical 
organization of decision-making processes, similar to the work of 
Stanescu et. al. Although our Tunnel Wars implementation uses 
perfect knowledge of the game state, as we will see this is not a 
hard requirement. However, given a model of opponent behavior, 
the agent should be able to approximatively simulate “steps” of 
the game, which occur at a rate of 60 per second. The agent also 
will rely on the implementation of various game-specific 
heuristics to estimate closeness to the game’s end or to the end of 
a particular objective. Given these requirements, along with a 
current game state, the agent produces a calculated action. In the 
Tunnel Wars context, there are only four actions available to the 
agent: left, right, jump, and fire (projectile), and each state 
represents the game-state at a given step or frame. 

!  
Figure 2: Interaction between layers of the Tunnel Wars agent 
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As mentioned, the agent is composed of three layers. The 
highest level layer (layer 3) employs Q-Learning and selects the 
optimal strategy based on a simplified state representation. The 
middle level layer (layer 2) uses classical search and exact 
filtering in order to find a motion path that conforms to the 
optimal strategy. The lowest level layer (layer 1) performs a 
variation of adversarial search to find the appropriate game action. 
The functionality and interaction of the layers is diagrammed in 
Figure 2. 

2.1 ACTION SELECTION 

Given that we are provided with a way to advance the state space, 
and that there are a discrete set of actions to choose from at each 
step, a natural method for probabilistic adversarial games is the 
expectiminimax adversarial search algorithm. However, there are 
a number of reasons why this classical approach is ill-fitted for 
physics-based action games: 

(1) This model assumes that the other player performs perfectly 
rational actions at each step. This assumption has been 
shown to expose weaknesses, especially in games that 
involve “metareasoning”, or strategy selection based on the 
opponent’s strategy. For nondeterministic games (such as 
Tunnel Wars), it has been shown that the optimal behavior in 
certain states may be random behavior.  2

(2) Due to a real-time computation cap of 1/60 or 1/30 seconds 
per frame, the expansion depth of performing an adversarial 
search of any kind is severely limited, even with 
deterministic alpha-beta pruning.  Once probabilistic 3

outcomes are incorporated into the state advancement model, 
the expansion depth becomes even more limited. 

(3) Given the small expansion depth, it becomes unclear, given 
the complexity of strategy-based gameplay, how to devise a 
general heuristic (oracle) that can evaluate the utility of a 
future game state. A heuristic function evaluated for each leaf 
node in the search that encapsulated considerations such as 
those of (1) of semi-stochastic complexity in a would make 
the game unplayably slow. 

(4) At 30 to 60 frames per second, human players are not 
adequately mimicked in the adversarial simulation of the 
search, as visual signals take humans on average roughly 250 
milliseconds (15 game state transitions at 60 frames per 
second) to react to.  4

In Tunnel Wars, it was found that even with a simple alpha-beta 
pruned adversarial search, human testing revealed that the AI 
agent could not feasibly expand far enough into the future to 
dodge a single projectile. Caching of search expansions was also 
found to be of little help. Due to the strong deviation of human 
adversarial behavior from the expected minimax behavior 
(reaction time, stochastic strategies), new expansions needed to be 
calculated each frame despite cached results. 

To combat each of these problems, we suggest the use of 
action-strings (predefined sequences of actions) in the place of  

single actions. Although this substitution sacrifices a degree of 
fine-tuned control over movement, the effect is no worse than that 
of slowing the reaction-time of the AI, which is already 
significantly faster than that of its human opponent. The exact 
actions to be placed together in an action string will vary 
depending on the game, but the action-strings should together 
form a basis by which the effect of taking a single action can be 
achieved or approximated given multiple frames. With action-
strings replacing single actions, the standard expectiminimax 
search can be performed over the state space to achieve generally 
better results. 

In the Tunnel Wars case, human testing revealed an action-
string set of just four action-strings of length four was effective 
for reacting to risks and rewards close to present. Although 
adopting this methodology caused the agent to climb walls and 
fired weapons at a slower, less optimal, rate – drawbacks often 
observed in human players with less dexterity – the agent could 
now approximately expand game states four times farther into the 
future, which was enough to dodge projectiles. An additional 
benefit was gained because the adversarial search only needed to 
be conducted every four frames (the length of the action string). 

This adapted version of the expectiminimax search forms the 
basis of the first layer. Although action-strings are insufficient to 
combat the problems of (1) and (3), we found it to be effective in 
combating the issues of (2) and (4). Action-strings more closely 
mimic human adversarial behavior in terms of reaction time, and 
are thus often more appropriate for state-expansions of minimax. 
Additionally, the expansion depth is enhanced at least by a factor 
of the expected length of an action-string. In a real-time setting, 
when an action-string is selected, computational power may be 
freed in subsequent frames by allowing the agent to perform each 
of the selected actions in the action string without re-computation 
of the optimal string. Although a fix for (1) is not offered here, (3) 
is solved by the upper layers 2 and 3. 

2.2 STRATEGY SELECTION 

We now describe the uppermost layer of long-term (lasting 
multiple seconds) strategy selection. The problem of 
metareasoning becomes more acute at this level, as long-term 
behavior is more random and frequently deviates from optimal. 
The problem of combating metareasoning and finding an accurate 
heuristic for the utility of a single state can be naturally linked 
together. A good utility-evaluating heuristic would learn to 
account for strategies and metareasoning and adjust the agent’s 
actions accordingly. Our model uses Q-learning to address the 
issue. Q-learning requires reinforcement from human players, and 
develops a “Q-function” of state-action utilities that reflects the 
various strategies used upon it, as well as its own strategies 
discovered through experimentation. Using an approximative 
reward function or heuristic the utilities can be learned. For 
example, reward is given out for Tunnel Wars agents winning or 
losing health, or winning or losing the game. 

Ideally, the Q-function would directly influence the heuristic 
function of layer 1, providing the learned values of each state by 
marginalizing over the actions available at that state. Also ideally, 
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each state-action pair would be represented in a dictionary of 
utility values holding mapping from every state in the game 
world. Although many action spaces (including that of Tunnel 
Wars) are sufficiently small for this, the state of any real action 
game involving continuous positions is too large to be stored on 
any system. To approximate similar state spaces, various grouping 
algorithms were considered. Not only must the continuous 
variables of various positions, velocities, and forces be 
considered, but also discrete state spaces such as the Tunnel Wars 
30x46 array of ground blocks also carries important information 
for the evaluation of utility. Although continuous state spaces are 
addressed by a number of algorithms outlined by Gaskett, 
Wettergreen, and Zelinsky’s review of the subject, none account 
for mixed continuous and discrete state spaces.  A method 5

proposed by Gasket et. al, involves interpolation of states between 
“wires” adjusted by a neural network. However, this can overlook 
important pieces of the game state. In Tunnel Wars this overlooks 
the interconnectedness between the players through tunnels, 
information the would be lost in most of the Q-learning variants 
proposed. 

!  
Figure 3: The filtered danger zone (red, yellow) and A* path 
(green), for an agent on the ground executing “Run Away” 

Without an accurate, feasible state representation, the state 
space of the Q-learning layer must be generalized and discretized. 
The more generalized the state representation becomes, the less 
useful it is to learn the utility of something as simple as “moving 
left a step” given a generalized state. It is for this reason that Q-
learning is confined to the topmost layer of strategy selection. 
Adopting strategies at the highest layer allows for hierarchical 
search chains as exemplified by Stanescu et. al’s published 
solution to StarCraft, a similarly realtime and strategic game.  In 6

our model, strategies are realized by specific targets-of-interest in 
space that the player must move to. In physics-based action 
games, there is often little difference between enacting a strategy 
and moving towards a target. Layer 3 therefore takes in simplified 
state representations and produces a target-point for the agent to 
move to. Layer 2 is then responsible for coordinating the objective 
produced by Q-learning with the heuristic or oracle function of the 

expectiminimax of layer 1. When layer 1 reaches the maximal 
expansion depth, layer 2 evaluates the conformance of the current 
state to the strategy of layer 3. 

A generalized form of simplifying the state spaces is still 
needed to further generalize this methodology. However, in 
Tunnel Wars we achieved satisfactory state representations by 
categorizing states based on discrete settings of the variables 
“Projectile”, “Ammo Amount”, “Opponent Projectile”, “Opponent 
Ammo Amount”, “X Distance from Opponent”, “Y Displacement 
from Opponent”. The Tunnel Wars strategies, each corresponding 
to a target position, were “Attack”, “Run Away”, “Get Ammo”, 
and “Dig Down”. 

The way the algorithm initialized a transition and thus got a 
new strategy had to be done in a very specific way because when 
a transition occurs between strategies is not obvious. The way in 
which we decided to go about it is if any of the following occurs: 
the current state changes, the player completes its current path 
described by layer 2, the player deviates from its current path by 
an fixed distance, the enemy’s danger zone changes by an fixed 
amount, or if an fixed amount of time passes by. In any one of 
these cases a transition occurs: the player will update reevaluate 
the current state to determine a new strategy. In order to build a 
large enough dictionary of utility values, the Tunnel Wars system 
was trained for 6 hours with the help of willing human 
participants to obtain the 13,000 utility values. 

2.3 STRATEGY EXECUTION 

As mentioned, each strategy provides a different heuristic to the 
adversarial search, but all incorporate a metric of closeness to a 
position. As physics-based action games often provide complex 
worlds that must be navigated through, merely providing the 
strategy target position is insufficient to produce real navigation 
behavior. For this reason, layer 2 conducts pathfinding (in the case 
of Tunnel Wars an A* search) to guide the agent to the target 
position. Apart from navigating around physical obstacles, the 
path-finding must also avoid zones in which the agent could lose 
the game or lose Q-learning reward (health). In many action-based 
games such zones take the form of areas in which enemies, 
projectiles, or some other form of danger could exist. Such danger 
zones can often be computed using Bayesian methods such as 
exact or particle filtering. As the danger zone only will be 
encountered after many frames go by, it is appropriate to simulate 
exact filtering for a time-length proportional to the distance from 
the target destination. To combat the computational demands of 
per-frame exact filtering, action-chaining should be again 
employed, or else an alternative discretization of state space. In 
the Tunnel Wars case, this was achieved by discretizing at the 
ground block level as shown in Figure 3. 

Layer 2 then operates as follows: Each time a strategy is 
selected, a danger zone is computed from Bayesian filtering of 
possible dangerous positions. In the case of Tunnel Wars this was 
made feasible by snapping positions to the nearest ground block. 
An A* path is then computed from the agent to the goal specified 
by the strategy, in which the cost function is a mixture of length of 
the path, and a measure of the amount of overlap with the enemy’s 
danger zone. Figure 3 displays an example danger zone and 
computed path. Layer 1’s adversarial search oracle then is 
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adjusted to weight conformance to the path in order to have the 
agent follow what it thinks is the best path towards achieving its 
strategy. A heuristic function of the strategy can also be 
incorporated at this level. In this way, a general selected strategy 
such as “Get ammo” can be translated into low-level actions such 
as moving left or right. 

3. RESULTS 

In our implementation of this Tunnel Wars AI algorithm, we first 
started with Layer 1.  We created the adversarial search algorithm 
described above without weighing any closeness to a specific path 
in its heuristic.  It turned out that this algorithm could stand alone 
beat any human in as long as there were no tunnels. The search 
algorithm could anticipate rockets, bombs, etc. much quicker than 
a human, but could not tunnel or execute or save itself from 
complex strategies involving tunnels. This motivated the 
incorporation of learning and the creation of layer 3. 

With all three layers, the AI agent was able to use all four 
strategies well to become a formidable opponent against human 
players. It exhibit particular strengths in: 

• Gathering power-ups. It is able to find the quickest path to 
get power-ups, and opt for this strategy whenever power-ups 
are needed to win. 

• Attacking. When the agent is armed with projectiles, it tracks 
down the enemy quickly and then use fires the projectiles 
precisely in manners that are quite difficult to dodge. 

• Dodging. The AI can dodge anything thrown at it like Neo in 
the Matrix. 

However, there are few issues that still hold back the agent from 
competing perfectly. It struggles with the following: 

• Staying out of dead ends. Despite the danger zone and A* 
heuristic, the Tunnel Wars agent still occasionally goes down 
tunnels it should avoid, which means that it can be defeated 
somewhat easily if this happens. This is due to power ups 
spawning randomly and the danger zone shifting in a way that 
it had not anticipated, as it has no ability to equate dead-ends 
with danger without more advanced state collapse methods. 
The use of a convolutional neural network on the blocks 
around the agent would be likely to solve this, and recognize 
dead-ends. 

• Fighting itself. The agent plays the game conservatively by 
avoiding the other player unless it knows that it can win, so 
simulating games against itself can occasionally take a while 
and still induce deadlock. 

• Freezing. Although calculation of utilities and paths could 
easily be spread among free frames that are not used by layer 
1, this was not implemented and as such strategy changes 
were more abrupt but also induced lag. This could easily be 
corrected by distributing the calculation among free frames. 

4. GENERALIZATION 

Although Tunnel Wars is unique in its block-based gameplay, 
physics-based action games share many qualities with Tunnel 
Wars that allow the technique to be generalized to other games of 
the same genre. As discussed, layer 3 must simplify the state 
space in some way which must be specific to the individual game, 
and simplify optimal gameplay into discrete strategies. 
Additionally each strategy of the game must come with its own 
heuristic of effectiveness of execution. The danger zone concept 
of layer 2 is similarly applicable to almost all action games. 
However, the discretized pathfinding may need to be adapted to 
the world-geometry of non-block-based games by applying 
action-chaining similar to that of layer 1. 

5. APPENDIX: HOW TO PLAY 

1. For instructions on building the game using Unity, follow 
setup instructions in the project’s README.md inside the 
game directory. 

2. Then double click PlayerVsAI.app to run the game. 
3. The AI agent plays on the right side, and the player plays on 

the left side. Move around your player with the W, A, S, D 
keys and press F to fire projectiles. You can climb walls by 
moving against them. 

4. Collect the randomly appearing projectile boxes and use them 
to dig under the wall to the other side. 

5. Use the projectiles to defeat the agent 


