
Developing Intelligent Agents for
Physics-Based Adversarial Action Games

Gabriel Montague, Brandon Price
Harvard University

1. INTRODUCTION

The genre of computer “action” games typically involve a player
with control over a single game character. To succeed in such
games, players typically require hand-eye coordination and the
ability to react quickly to new information. Although real-time
strategy (RTS) games also require quick reaction to information,
RTS games generally do not emphasize hand-eye coordination
and fine-tuned control over player movement. We use the term
physics-based to describe action games that take place in worlds
that are loosely governed by the laws of physics. In physics-based
games, the positions of various game objects are continuously
updated according to some velocity, acceleration, or collision
force.

!
Figure 1: Split screen view of the Tunnel Wars game

Most published research in the development of computer-
game-playing agents has been focused towards RTS games, with
particular emphasis on the popular StarCraft series of RTS games
(Blizzard Entertainment, 1998–present). As is exemplified by
(Stanescu et. al., 2014), successful RTS agents often employ a
hierarchy of solution space searches – one for each strategic
aspect of gameplay. Such systems are often divided into “layers”: 1

the topmost layer directs the behaviors of levels beneath through
the selection of general strategy, while the bottommost layer solve
specific aspects of gameplay and produce actions. In this paper we
apply a similar layer-based divide-and-conquer approach to
physics-based action games. Our method employs three layer: a
strategy-selection layer, navigation layer, and action layer, each of
which will be discussed in detail.

We test the methodology on the Tunnel Wars action game
(www.tunnelwars.com), which was reworked to provide an
abstraction of the state space. The Tunnel Wars game involves
competition between two characters, originally both controlled by
keyboard input. The characters can move continuously in the left
and right directions and are pulled downwards by gravity, but can
jump if they are touching the ground or walls. A character can also
fire projectiles to reduce the health of the opponent, or to tunnel
through the 30x46 destructible grid of ground blocks that the

game is set upon. If a player’s character runs out of health then
then they lose the game, and their opponent wins. Despite the
simple mechanics of the game, complex strategies are often
needed to win due to the many configurations of tunnels that can
arise. The Tunnel Wars website contains further details. It is worth
noting that the gameplay is nondeterministic, with random
outcomes influencing the motion of some projectiles and power-
up spawning.

In applying and training our method with the Tunnel Wars
game, our aimed was to achieve a solution the was both runnable
in real time and effective in competing against human players.

2. METHOD SUMMARY

The proposed methodology operates using a hierarchical
organization of decision-making processes, similar to the work of
Stanescu et. al. Although our Tunnel Wars implementation uses
perfect knowledge of the game state, as we will see this is not a
hard requirement. However, given a model of opponent behavior,
the agent should be able to approximatively simulate “steps” of
the game, which occur at a rate of 60 per second. The agent also
will rely on the implementation of various game-specific
heuristics to estimate closeness to the game’s end or to the end of
a particular objective. Given these requirements, along with a
current game state, the agent produces a calculated action. In the
Tunnel Wars context, there are only four actions available to the
agent: left, right, jump, and fire (projectile), and each state
represents the game-state at a given step or frame.

!
Figure 2: Interaction between layers of the Tunnel Wars agent

 Stanescu, Marius, Nicolas A. Barriga, and Michael Buro. Hierarchical Adversarial Search Applied to Real-Time Strategy 1

Games. Edmonton, CA: University of Alberta

http://www.tunnelwars.com

As mentioned, the agent is composed of three layers. The
highest level layer (layer 3) employs Q-Learning and selects the
optimal strategy based on a simplified state representation. The
middle level layer (layer 2) uses classical search and exact
filtering in order to find a motion path that conforms to the
optimal strategy. The lowest level layer (layer 1) performs a
variation of adversarial search to find the appropriate game action.
The functionality and interaction of the layers is diagrammed in
Figure 2.

2.1 ACTION SELECTION

Given that we are provided with a way to advance the state space,
and that there are a discrete set of actions to choose from at each
step, a natural method for probabilistic adversarial games is the
expectiminimax adversarial search algorithm. However, there are
a number of reasons why this classical approach is ill-fitted for
physics-based action games:

(1) This model assumes that the other player performs perfectly
rational actions at each step. This assumption has been
shown to expose weaknesses, especially in games that
involve “metareasoning”, or strategy selection based on the
opponent’s strategy. For nondeterministic games (such as
Tunnel Wars), it has been shown that the optimal behavior in
certain states may be random behavior. 2

(2) Due to a real-time computation cap of 1/60 or 1/30 seconds
per frame, the expansion depth of performing an adversarial
search of any kind is severely limited, even with
deterministic alpha-beta pruning. Once probabilistic 3

outcomes are incorporated into the state advancement model,
the expansion depth becomes even more limited.

(3) Given the small expansion depth, it becomes unclear, given
the complexity of strategy-based gameplay, how to devise a
general heuristic (oracle) that can evaluate the utility of a
future game state. A heuristic function evaluated for each leaf
node in the search that encapsulated considerations such as
those of (1) of semi-stochastic complexity in a would make
the game unplayably slow.

(4) At 30 to 60 frames per second, human players are not
adequately mimicked in the adversarial simulation of the
search, as visual signals take humans on average roughly 250
milliseconds (15 game state transitions at 60 frames per
second) to react to. 4

In Tunnel Wars, it was found that even with a simple alpha-beta
pruned adversarial search, human testing revealed that the AI
agent could not feasibly expand far enough into the future to
dodge a single projectile. Caching of search expansions was also
found to be of little help. Due to the strong deviation of human
adversarial behavior from the expected minimax behavior
(reaction time, stochastic strategies), new expansions needed to be
calculated each frame despite cached results.

To combat each of these problems, we suggest the use of
action-strings (predefined sequences of actions) in the place of

single actions. Although this substitution sacrifices a degree of
fine-tuned control over movement, the effect is no worse than that
of slowing the reaction-time of the AI, which is already
significantly faster than that of its human opponent. The exact
actions to be placed together in an action string will vary
depending on the game, but the action-strings should together
form a basis by which the effect of taking a single action can be
achieved or approximated given multiple frames. With action-
strings replacing single actions, the standard expectiminimax
search can be performed over the state space to achieve generally
better results.

In the Tunnel Wars case, human testing revealed an action-
string set of just four action-strings of length four was effective
for reacting to risks and rewards close to present. Although
adopting this methodology caused the agent to climb walls and
fired weapons at a slower, less optimal, rate – drawbacks often
observed in human players with less dexterity – the agent could
now approximately expand game states four times farther into the
future, which was enough to dodge projectiles. An additional
benefit was gained because the adversarial search only needed to
be conducted every four frames (the length of the action string).

This adapted version of the expectiminimax search forms the
basis of the first layer. Although action-strings are insufficient to
combat the problems of (1) and (3), we found it to be effective in
combating the issues of (2) and (4). Action-strings more closely
mimic human adversarial behavior in terms of reaction time, and
are thus often more appropriate for state-expansions of minimax.
Additionally, the expansion depth is enhanced at least by a factor
of the expected length of an action-string. In a real-time setting,
when an action-string is selected, computational power may be
freed in subsequent frames by allowing the agent to perform each
of the selected actions in the action string without re-computation
of the optimal string. Although a fix for (1) is not offered here, (3)
is solved by the upper layers 2 and 3.

2.2 STRATEGY SELECTION

We now describe the uppermost layer of long-term (lasting
multiple seconds) strategy selection. The problem of
metareasoning becomes more acute at this level, as long-term
behavior is more random and frequently deviates from optimal.
The problem of combating metareasoning and finding an accurate
heuristic for the utility of a single state can be naturally linked
together. A good utility-evaluating heuristic would learn to
account for strategies and metareasoning and adjust the agent’s
actions accordingly. Our model uses Q-learning to address the
issue. Q-learning requires reinforcement from human players, and
develops a “Q-function” of state-action utilities that reflects the
various strategies used upon it, as well as its own strategies
discovered through experimentation. Using an approximative
reward function or heuristic the utilities can be learned. For
example, reward is given out for Tunnel Wars agents winning or
losing health, or winning or losing the game.

Ideally, the Q-function would directly influence the heuristic
function of layer 1, providing the learned values of each state by
marginalizing over the actions available at that state. Also ideally,

 Russell, Stuart J., and Peter Norvig. Artificial Intelligence: A Modern Approach. Second ed. Upper Saddle River, NJ: Pearson 2

Education, 1995. Page 613.

 Our original intention with the Tunnel Wars agent was to embed it in a web browser, so we did not consider GPU parallelism as an option 3

for optimization.

"Reaction Time Statistics." Human Benchmark. Web. 9 Dec. 2015. 4

<http://www.humanbenchmark.com/tests/reactiontime/statistics>.

each state-action pair would be represented in a dictionary of
utility values holding mapping from every state in the game
world. Although many action spaces (including that of Tunnel
Wars) are sufficiently small for this, the state of any real action
game involving continuous positions is too large to be stored on
any system. To approximate similar state spaces, various grouping
algorithms were considered. Not only must the continuous
variables of various positions, velocities, and forces be
considered, but also discrete state spaces such as the Tunnel Wars
30x46 array of ground blocks also carries important information
for the evaluation of utility. Although continuous state spaces are
addressed by a number of algorithms outlined by Gaskett,
Wettergreen, and Zelinsky’s review of the subject, none account
for mixed continuous and discrete state spaces. A method 5

proposed by Gasket et. al, involves interpolation of states between
“wires” adjusted by a neural network. However, this can overlook
important pieces of the game state. In Tunnel Wars this overlooks
the interconnectedness between the players through tunnels,
information the would be lost in most of the Q-learning variants
proposed.

!
Figure 3: The filtered danger zone (red, yellow) and A* path
(green), for an agent on the ground executing “Run Away”

Without an accurate, feasible state representation, the state
space of the Q-learning layer must be generalized and discretized.
The more generalized the state representation becomes, the less
useful it is to learn the utility of something as simple as “moving
left a step” given a generalized state. It is for this reason that Q-
learning is confined to the topmost layer of strategy selection.
Adopting strategies at the highest layer allows for hierarchical
search chains as exemplified by Stanescu et. al’s published
solution to StarCraft, a similarly realtime and strategic game. In 6

our model, strategies are realized by specific targets-of-interest in
space that the player must move to. In physics-based action
games, there is often little difference between enacting a strategy
and moving towards a target. Layer 3 therefore takes in simplified
state representations and produces a target-point for the agent to
move to. Layer 2 is then responsible for coordinating the objective
produced by Q-learning with the heuristic or oracle function of the

expectiminimax of layer 1. When layer 1 reaches the maximal
expansion depth, layer 2 evaluates the conformance of the current
state to the strategy of layer 3.

A generalized form of simplifying the state spaces is still
needed to further generalize this methodology. However, in
Tunnel Wars we achieved satisfactory state representations by
categorizing states based on discrete settings of the variables
“Projectile”, “Ammo Amount”, “Opponent Projectile”, “Opponent
Ammo Amount”, “X Distance from Opponent”, “Y Displacement
from Opponent”. The Tunnel Wars strategies, each corresponding
to a target position, were “Attack”, “Run Away”, “Get Ammo”,
and “Dig Down”.

The way the algorithm initialized a transition and thus got a
new strategy had to be done in a very specific way because when
a transition occurs between strategies is not obvious. The way in
which we decided to go about it is if any of the following occurs:
the current state changes, the player completes its current path
described by layer 2, the player deviates from its current path by
an fixed distance, the enemy’s danger zone changes by an fixed
amount, or if an fixed amount of time passes by. In any one of
these cases a transition occurs: the player will update reevaluate
the current state to determine a new strategy. In order to build a
large enough dictionary of utility values, the Tunnel Wars system
was trained for 6 hours with the help of willing human
participants to obtain the 13,000 utility values.

2.3 STRATEGY EXECUTION

As mentioned, each strategy provides a different heuristic to the
adversarial search, but all incorporate a metric of closeness to a
position. As physics-based action games often provide complex
worlds that must be navigated through, merely providing the
strategy target position is insufficient to produce real navigation
behavior. For this reason, layer 2 conducts pathfinding (in the case
of Tunnel Wars an A* search) to guide the agent to the target
position. Apart from navigating around physical obstacles, the
path-finding must also avoid zones in which the agent could lose
the game or lose Q-learning reward (health). In many action-based
games such zones take the form of areas in which enemies,
projectiles, or some other form of danger could exist. Such danger
zones can often be computed using Bayesian methods such as
exact or particle filtering. As the danger zone only will be
encountered after many frames go by, it is appropriate to simulate
exact filtering for a time-length proportional to the distance from
the target destination. To combat the computational demands of
per-frame exact filtering, action-chaining should be again
employed, or else an alternative discretization of state space. In
the Tunnel Wars case, this was achieved by discretizing at the
ground block level as shown in Figure 3.

Layer 2 then operates as follows: Each time a strategy is
selected, a danger zone is computed from Bayesian filtering of
possible dangerous positions. In the case of Tunnel Wars this was
made feasible by snapping positions to the nearest ground block.
An A* path is then computed from the agent to the goal specified
by the strategy, in which the cost function is a mixture of length of
the path, and a measure of the amount of overlap with the enemy’s
danger zone. Figure 3 displays an example danger zone and
computed path. Layer 1’s adversarial search oracle then is

Gaskett, Chris, David Wettergreen, and Alexander Belinsky. Q-Learning in Continuous State and Action Spaces. Canberra, 5

Australia: The Australian National University

 Stanescu, Marius, Nicolas A. Barriga, and Michael Buro. Hierarchical Adversarial Search Applied to Real-Time Strategy 6

Games. Edmonton, CA: University of Alberta

adjusted to weight conformance to the path in order to have the
agent follow what it thinks is the best path towards achieving its
strategy. A heuristic function of the strategy can also be
incorporated at this level. In this way, a general selected strategy
such as “Get ammo” can be translated into low-level actions such
as moving left or right.

3. RESULTS

In our implementation of this Tunnel Wars AI algorithm, we first
started with Layer 1. We created the adversarial search algorithm
described above without weighing any closeness to a specific path
in its heuristic. It turned out that this algorithm could stand alone
beat any human in as long as there were no tunnels. The search
algorithm could anticipate rockets, bombs, etc. much quicker than
a human, but could not tunnel or execute or save itself from
complex strategies involving tunnels. This motivated the
incorporation of learning and the creation of layer 3.

With all three layers, the AI agent was able to use all four
strategies well to become a formidable opponent against human
players. It exhibit particular strengths in:

• Gathering power-ups. It is able to find the quickest path to
get power-ups, and opt for this strategy whenever power-ups
are needed to win.

• Attacking. When the agent is armed with projectiles, it tracks
down the enemy quickly and then use fires the projectiles
precisely in manners that are quite difficult to dodge.

• Dodging. The AI can dodge anything thrown at it like Neo in
the Matrix.

However, there are few issues that still hold back the agent from
competing perfectly. It struggles with the following:

• Staying out of dead ends. Despite the danger zone and A*
heuristic, the Tunnel Wars agent still occasionally goes down
tunnels it should avoid, which means that it can be defeated
somewhat easily if this happens. This is due to power ups
spawning randomly and the danger zone shifting in a way that
it had not anticipated, as it has no ability to equate dead-ends
with danger without more advanced state collapse methods.
The use of a convolutional neural network on the blocks
around the agent would be likely to solve this, and recognize
dead-ends.

• Fighting itself. The agent plays the game conservatively by
avoiding the other player unless it knows that it can win, so
simulating games against itself can occasionally take a while
and still induce deadlock.

• Freezing. Although calculation of utilities and paths could
easily be spread among free frames that are not used by layer
1, this was not implemented and as such strategy changes
were more abrupt but also induced lag. This could easily be
corrected by distributing the calculation among free frames.

4. GENERALIZATION

Although Tunnel Wars is unique in its block-based gameplay,
physics-based action games share many qualities with Tunnel
Wars that allow the technique to be generalized to other games of
the same genre. As discussed, layer 3 must simplify the state
space in some way which must be specific to the individual game,
and simplify optimal gameplay into discrete strategies.
Additionally each strategy of the game must come with its own
heuristic of effectiveness of execution. The danger zone concept
of layer 2 is similarly applicable to almost all action games.
However, the discretized pathfinding may need to be adapted to
the world-geometry of non-block-based games by applying
action-chaining similar to that of layer 1.

5. APPENDIX: HOW TO PLAY

1. For instructions on building the game using Unity, follow
setup instructions in the project’s README.md inside the
game directory.

2. Then double click PlayerVsAI.app to run the game.
3. The AI agent plays on the right side, and the player plays on

the left side. Move around your player with the W, A, S, D
keys and press F to fire projectiles. You can climb walls by
moving against them.

4. Collect the randomly appearing projectile boxes and use them
to dig under the wall to the other side.

5. Use the projectiles to defeat the agent

