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ABSTRACT 
In this paper, we discuss motivations and concerns surrounding 
identification of individuals based on the heart rate biometric. We 
also offer a simple distance-based algorithm that achieves, at least 
at a small scale, reasonable accuracy. The algorithm is able to 
identify individuals with an accuracy of over 50% given a recent 
knowledge base. We find that heart rate data falls into a daily and 
weekly periodicity, and that the most useful data for classification 
is the data closest in time to the sample that must be guessed. 
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1. INTRODUCTION 
Wearable health-related technology has been on the rise in the 
past decade, as an increasing population of consumers are seeking 
commercial datification and analysis of their well-being. In 2016 
alone, the number of wearable devices created experienced a 
growth of nearly 30 percent from its estimated total of 79 million 
in 2015.1 By 2020, this number is predicted to skyrocket to 411 
million devices, with wearable tech estimated to become a 34 
billion dollar industry.2 At the core of the existing and projected 
fitness wearable industries are devices and connected platforms 
that monitor health and fitness. 

A large number of the emerging health and fitness systems, such 
as FITBIT and Apple Watch, incorporate the measurement and 
analysis of heartbeat data. Heartbeat data can be used most 
obviously to determine intensity and frequency of physical 
activity, but also hosts a wide variety of other analytical uses. 
Implicitly stored in a heartbeat signal is information that can be 
mined to determine sleep patterns, activity types, and individual 
levels of fitness, hydration, intoxication, fatigue, illness, stress, 
and mental health, among types of analyses.3 In this way, 
heartbeat encapsulates both the short term day-to-day activities of 
an individual, as well as an individual’s long term physiological 
state, and should thus be treated as information that is highly 
private to an individual. 

Our goal in this research is to access the risk posed to an 
individual by their heartbeat signal falling into the hands of 
adversaries. In the following section we will formally identify the  
types of potential adversaries that could act to exploit this data, as 
well as possible means of exploitation. Our focus with the rest of 
the paper is to investigate possibility and risk of de-anonymization 
of heartbeat signals. Such de-anonymization would allow an 
adversary to listen or extract an anonymized heartbeat, then link 
the personal data extracted to an individual. 

To quantitatively access this risk, we take the heartbeat signals of 
a team of ten athletes over the course of 92 days, and use it to 
build a simple classifier algorithm that successfully de-
anonymization with a success rate of over 50 percent in short term 

cases. We hope to show that such de-anonymization allows for 
adversaries to link personal data in this form to the source 
individual, and should be viewed as an increasingly credible 
concern for the future privacy of individuals. 

2. THREAT MODEL 
We define an adversary in this context as any actor that could use 
an individual’s heartbeat data to achieve ends that are contrary to 
the individual’s interest. 

2.1. Data Sources 
An adversary may procure private heart rate data in any number 
of ways: 

Firstly, an adversary could negotiate with the individual to 
exchange the data in return for benefits or rewards. For instance, 
companies may require their employees to wear fitness wearables 
and share the harvested health data, offering discounts on 
company health-insurance plans if the data indicates that the 
employee is healthy.4 An adversary could also obtain heartbeat 
data that is made accessible online with inadequate security 
protections. In both these cases, the heartbeat signal and all of its  
derived data is directly tied to the individual. However, for the 
scope of this paper we will concern ourselves with eavesdropping 
cases in which the identity of the individual being mined is 
unknown at the outset, and the individual often does not know that 
they are being monitored. 

In these cases, an adversary could obtain heartbeat data by 
monitoring streaming channels from the wearable itself. Although 
many modern wearables use Bluetooth wireless communication, a 
protocol that allows for encryption of streamed data, many device-
makers are anecdotally known to make poor use of the protection 
capabilities made available to them, for example by using a 
constant trivial encryption key for all devices and 
communications. Additionally, the Bluetooth protocol itself comes 
with its own vulnerabilities; for instance a number of security 
holes were found with Bluetooth’s recently updated protocol for 
Internet of Things devices: Bluetooth 4 low-energy.5 Together, 
such vulnerabilities allow for easy eavesdropping on devices for 
listeners within a close-enough range of the victim. 

Another interesting case is the possibility of an adversary 
collecting heartbeat data on an individual without any wearable at 
all. New technology developed at MIT’s Computer Science and 
Artificial Intelligence Laboratory allow for heartbeat data to be 
extracted from stationary individuals from a video feed with a 
startling degree of accuracy. With this method, heartbeats are 
extracted from seated, standing, or sleeping individuals merely 
from small motions of the head resulting from blood circulation. 
The method is accurate enough to determine the number of 
milliseconds between heartbeats (determining HRV), and robust 
enough to measure heartbeats of individuals that are not facing the 
camera or wearing a mask.6  

Using either of these previous two methodologies, an adversary 
could potentially obtain personal yet anonymized data in the form 
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of a heartbeat signal. The question then becomes what incentives 
an adversary has for collecting this personal information, 
assuming he or she is able to link the data back to the individual. 

2.2. Incentives 
Due to the highly personal nature of information contained in a 
heartbeat signal, there are a number of reasons an adversary 
would be compelled to harvest the heartbeat data of individuals. 

One of the largest incentives is for employers, for whom hiring 
employees in poor health could result in harm to the organization. 
The most productive employees are generally thought to be those 
that are mentally and physically healthy, and it is for this reason  
that many organizations sponsor organized athletic activity for 
employees. In cases where an employer provides healthcare 
coverage to its workers, corporate interest in the health status of 
employees is particularly strong. 

Approximately 60 percent of United States residents rely on a 
healthcare plan provided by their employer, and this number is 
expected to continue to grow in coming years.7 Although 
organizations are prohibited from discriminating against 
employees in poor health by federal law, companies may use 
personal health data in determining the amount to cover in 
individual healthcare plans.7 

Use of healthcare data in determining healthcare coverage is a 
practice that is growing with the number of fitness wearables 
made available. As a result, modern companies in the United 
States are increasingly outsourcing health-status determination to 
third party companies, who market the scraping of employee 
health data to employers, especially as no federal law prohibits 
surveilling of employees in this way.7 

Due to the highly personal nature of the knowledge of day-to-day 
activities such as sleeping, drinking, and physical activities, as 
well as the personal nature of health metrics provided heartbeat 
data, there exist any number of other uses of this derived 
information that are specific to the monitored individuals in 
question. 

2.3. De-Anonymization 
Given that in many ways, the most readily available streams of 
heartbeat data come from sources that do not reveal the identity of 
the eavesdropping victim, an adversary must put a name to the 
heartbeat data to make use of it. A number of factors, such as 
physical location and other circumstances of the collection, allow 
an adversary to narrow down possibilities for the identity of the 
victim, but as we find, there are a number of attributes in the data 
itself that indicate the individual. 

The heartbeat data can be cross-validated in many ways, but our 
focus in this paper revolves around validation of identity based on 
previous known samples of heartbeat signals. If an adversary has 
obtained a sample of heart rate signals generated by known 
individuals, we find it then becomes easier to assign an identity to 
future heartbeat signals. This would enable adversaries to collect 
heart rate data by eavesdropping in bulk, then labelling each 
signal with an identity based on an existing knowledge base to 
make use of the harvested data. 

Using high-resolution electric-based heartbeat data in the form of 
an electrocardiogram (ECG), such de-anonymization has already 
been shown to be possible with a high degree of accuracy among 
the entire human population. Given knowledge of any individual’s 
ECG, existing algorithms are able to identify the individual at a 
later time from another ECG.8 However, ECG’s require more 

complex devices to measure than raw heartbeat-pulse data, and 
are therefore do not pose a significant privacy concern.8 As we 
have seen, the heartbeat data more readily available for 
exploitation to an adversary is more likely to be a courser 
heartbeat dataset emanated from devices, which does not include 
information about the body’s electrical signals, and likely is not 
sending beat-by-beat information, but information in the form of 
minute-by-minute heart rate data. 

3. DATASET 
To investigate the possibility of de-anonymization from course 
heartbeat data available to eavesdroppers, a dataset was obtained 
for experimentation of the minute-by-minute heart rates of ten 
athletes on an athletic team. Each athlete used a wearable with an 
optical wrist sensor of moderate accuracy to collect data, and each 
athletes was instructed to wear 24 hours a day for a period of 92 
days. 

3.1. Limitations 
It is important to note that this dataset is comprised of individuals 
that participated in the same activities during over three hours 
each day of the week, and that the athletes observed practiced 
many of the same day-to-day activities, which is hypothesized to 
have reduced the accuracy of differentiation. 
Also important is the observation that, due to limitations with 
charging the devices, not all of the athletes were successful in 
producing a steady data stream for the entire  period of 92 days. In 
fact, all but one of the athletes were found to have significant 
holes in their data – stretches of many hours in which no heartbeat 
was logged to the system. The daily percentages of desired use for 
each athlete are plotted in Figure 1. However, these limitations 
mirror real scenarios of consumer data-collection in which an 
adversary is targeting a group. 

3.2. Preprocessing 
In preprocessing data for use in our identification algorithm, we  
proceeded with the ideology of making features, such as exercise 
and sleeping, as easily identifiable as possible. The following 
problems were addressed in preprocessing: 
- Noise: Signals from optical sensors carry noise, and prevent 

features such as periods of elevated heart rate from being fully 
consistent. 

- Holes: Holes in the data complete erase features, or disrupt their 
form. 
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Figure 1. Plot of daily compliance (0 to 1) over each day. 



To address the problem of noise, multilevel wavelet denoising was 
used. This methodology yielded strong results in a similar 
experiment conducted by Miro Enev et. al. in their publication 
Automobile Driver Fingerprinting, allowing differentiation 
between drivers.9 When comparing our own algorithm’s results 
(section 4) from raw data versus denoised data, it was found that 
the denoised data yielded stronger results as well, and was 
effective over standard median-filtering of the heart rate signal. It 
was found that decomposition using the Haar wavelet yielded the 
most consistent denoising of data. 
To address the problem of holes, linear interpolation was used, 
and was found to have similarly positive results on the outcome of 
the algorithm. 
TODO: Show preprocessing. 

4. ALGORITHM 
We sought in this study to construct a simple algorithm for heart 
rate data de-anonymization among small groups. We hoped our 
algorithm would: 
- Demonstrate possibilities for de-anonymization of an arbitrary 

heart rate signal 
- Be relatively simple and provide a building block for more 

robust machine-learning algorithms for identification 
- Be extensible to larger datasets 

4.1. Motivation 
At the heart of many signal-based recognition algorithms is a 
matching function that compares two time-series data-streams. 
For instance, time series matching and comparison serves as a 
basis for the modern music-recognition software Shazam.10 

However, whereas music-recognition algorithms match noisy 
measured signals to a constant known signal, no part of an 
individual’s daily heart rate signal is constant over all windows of 
time. To mitigate this problem with heart rate matching the 
following hypotheses were leveraged: 
1. Most if not all individuals follow daily routines. Therefore, an 

individual’s heart rate signal, although not identical from day-
to-day, nonetheless is marginally periodic with a period of one 
day. 

2. Many individuals follow weekly routines. Therefore, an 
individual’s heart rate signal will be marginally periodic with a 
period of one week. 

Given that these two hypotheses are correct, we find ourselves 
able to employ a similar algorithm to music-recognition scenarios: 
- A noisy sample signal from an individual is observed, with a 

timestamp 
- The signal is compared to a database of previously observed 

signals, comparing in particular to parts that correspond time-
wise to the same part of weekly and daily cycles. 

- The database signal that most closely matches the sample signal 
in this way is the best candidate for a match. 

In particular, this cycle-alignment matching means that if a sample 
is collected on a Wednesday at 2 PM, we match this signal to 
other Wednesdays at 2 PM we have collected in our preexisting 
database. 

4.2. Distance Metric 
To test these two hypotheses, a distance metric is needed to 
compare windows of heart rate signals. Per recommendations of 
Joan Serrá et. al. in An Empirical Evaluation of Similarity 
Measures for Time Series Classification, we use the dynamic time 

warping (DTW) distance metric in comparing the signals in our 
algorithm.11  

Essential to the effectiveness of DTW as a distance metric is 
proper normalization of compared features.12 However, leaving 
data unnormalized has the advantage that individuals with higher 
or lower average heart rates are further differentiated by the DTW 
algorithm. Between normalization by day, normalization by 
athlete, and no normalization in comparisons where all considered 
for use in the distance metric. To test each option, a student’s T-
test was conducted on the two periodicity hypotheses mentioned 
before for each type of normalization. The T-test was conducted 
upon windows of the length of a single day as samples. We 
selected day-by-day normalization, as it yielded the best results in 
the T-test (the lowest p value). Comparisons of normalizations are 
shown in Table 1 and Table 2. We were unable to effect the 
weekly hypothesis results by varying the normalization type. In 
general, we found that although each test was far from statistical 
significance, our distance metric gave evidence for both 
hypotheses. 

Table 1. Week periodicity validation based on type of 
normalization 

Table 2. Day periodicity validation based on type of 
normalization 

Unsurprisingly, we found greater evidence for daily periodicity 
than weekly periodicity in the individuals, with a difference of 
roughly 40 total BPM in the average distances between aligned 
and nonaligned windows. 
Finally the DTW algorithm operates by “warping” signal features 
to move them in time to align with paired features. The maximal 
warping duration was chosen arbitrarily to be 6 hours. From 
observing comparisons made, it is unlikely that time-warping at 
such a long duration would occur naturally within the algorithm, 
so this decision is unlikely to have effected the results, and was 
chosen for considerations of speed. 

4.3. Algorithm 
Given this distance metric between windows, we designed the 
simple algorithm based on the points listed in section 4.1. The 
algorithm takes as input a 24-hour window of signal data and 
classifies it as belonging one of the ten potential athletes. It makes 
this decision with the help of a database comprised of a few 

Normalization By day By athlete None

µ aligned 353.0456 353.0456 353.0456

µ non-aligned 380.6239 380.6239 380.6239

σ2 aligned 1.3361E+04 1.3361E+04 1.3361E+04

σ2 nonaligned 1.3000E+04 1.3000E+04 1.3000E+04

p value 0.4743 0.4743 0.4743

Normalization By day By athlete None

µ aligned 421.0390 382.7449 1.0079E+04

µ non-aligned 461.0029 417.4920 1.2657E+04

σ2 aligned 1.1509E+04 1.2154E+04 8.1403E+06

σ2 nonaligned 1.1347E+04 1.1792E+04 1.3621E+07

p value 0.4414 (lowest) 0.4516 0.4951
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weeks-worth of previous heart rate signals and their attached 
names. Given a sample it works as follows: 
1. For each athlete: 

a. For each window of the athlete, compute the distance to 
the sample window and add it to the athlete’s score. If the 
window is week-aligned with the sample (same day-of-
week), decrease the weight of the contribution to the score 
from 1.0 to 0.8. 

b. Keep track of windows that are empty or too sparsely 
populated with heart rate data, and at the end of the 
athlete’s score tallying, adjust the score so that each 
missing day contributed the mean per complete day to the 
score. 

2. Select the athlete with the lowest score. The athlete with the 
second lowest score is the second guess, the athlete with the 
third lowest score the third guess, etc. 

Input samples that were empty or sparse of data below a threshold 
were discarded in the classification. 

4.4. Potential improvements 
There are a number of shortcomings in the algorithm used 
deriving from its simplicity that can be spotted without any 
knowledge of its performance. 
Firstly, the algorithm as developed contains a number of arbitrary 
choices that should be machine-learned in future replications. 
Particularly, the decision to deal with data-less days as 
contributing the mean, as well as the weekday-alignment weight 
of 0.8 are likely to be suboptimal. 
Apart from that there are a number of other likely hypotheses that 
can be weighed into the algorithm that would likely improve its 
performance. DTW performs better when the ends of a signal are 
weighted down, which is not implemented in this version.11 It is 
also likely that the contributions of windows should be weighted 
down based on how far time-wise they are from the sample, as 
daily and weekly patterns are likely to change over time, even at 
the heart rate level. 
In either case, this algorithm can likely be replaced by a time-
based neural network or a number of parallel support vector 
machines, that incorporate a larger number of factors. Miro Enev 
et. al. demonstrate the effectiveness of these more sophisticated 
approaches in their fingerprinting of driver signals.9  

5. Results 
The algorithm was tried under four circumstances, varying the 
size of the knowledge base, as well as varying the length of time 
between the samples and knowledge base. The knowledge base 
size was tested at 25 days and 35 days in length, and the gap 
between sample and knowledge base was altered between a single 
day and ten days. Under these conditions, random samples were 
selected from the week following the gap, and the classification 
carried out 500 times. The accuracy of the classification for each 
scenario is given by Table 3. 

Table 1. Accuracy of classification in each situation 

Second, third, etc. guess were also stored for each trial. In the case 
that the first guess was incorrect, the algorithm usually guessed 
the individual upon the second guess. Plotting accuracy vs. 
number of guesses given we obtain the results given in Figure 2, 
Figure 3, Figure 4, and Figure 5. 

!  
Figure 2. Accuracy for small base, close to sample 

!  
Figure 3. Accuracy for large base, close to sample 

Small base Large base

Close gap 63.0% 57.7%

Far gap 52.8% 57.4%
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!  
Figure 4. Accuracy for small base, far from sample 

!  
Figure 5. Accuracy for large base, far from sample 

Figure 6 and Figure 7 show the comparison of accuracy when 24-
hour sample windows with holes (missing data) were discarded 
from the classification results. In general this trend was adhered to 
by all four types of simulation. 

!  
Figure 6. Holes for small base, close to sample 

!  
Figure 7. Holes for large base, far from sample 

6. Discussion 
We find from these results that in the case that our sample comes 
within seven days of our knowledge base, our simple algorithm is 
able to achieve a surprising degree of accuracy. However, as 
samples are taken further from the knowledge base, the accuracy 
of the algorithm decreases. This is likely because daily and 
weekly rhythms change over time, invalidating the knowledge 
base. 
Perhaps the most puzzling result the fact that increasing the size 
of the knowledge base yields poorer results for a close gap, and 
stronger results for a far gap. However this is likely due to the fact 
that in the case of a small base and a close gap, the small base 
encapsulates all relevant cycles needed to distinguish upcoming 
samples. However if we increase the size of the base, older data is 
introduced, data encoding changed habits from months before that 
is not as relevant to deducing upcoming samples. In the case of a 
gap between knowledge base and samples, the knowledge base 
expanding leads to the inclusion of more relevant information that 
was otherwise lost in the gap. 
This insight gives strength to our initial suspicion that the 
algorithm could be significantly strengthened by giving weight to 
the age of samples. It is clear from the data that older samples in a 
knowledge base are less valuable in classifying an incoming 
sample. 
In general, we find that the accuracy of the algorithm is a 
weighted product of the following factors, for which the weights 
can be guessed from the graphs but not deduced with entire 
certainty: 
1. The gap between the knowledge base and the sample 
2. The number of samples in our knowledge base 
3. The amount of data collected in our incoming sample that we 

must classify. 
The first and the third are disproportional to the accuracy of the 
algorithm, while the second really depends on how the knowledge 
base is growing; if it receives newer, fresher data on individuals, 
then the accuracy of the algorithm will increase. 
Finally the last and perhaps most important contributor to the 
accuracy of the data is the number of classification groups: the 
number of athletes being guessed from. Based on similarity to the 
work of Enev et. al., compression and optimization of this 
algorithm and similar ones is applicable at a large scale for 
identification. However, if the algorithm does not guess the 
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correct individual from the data, and there is an increased number 
of individuals to choose from, it is likely that the true source of 
the data will become much harder to know judging from the 
guesses, as the algorithm run on 100 people will produce a 
ranking of 100, with likely only close to 60% chance that the first 
of the people is in fact the source of the sample. 
However, also pointed out by Enev et. al., a number of data points 
surrounding the collection of the data can be leveraged to narrow 
down the list of candidate individuals to guess among. Given that 
the original context of the investigation was eavesdropping or 
recording by adversaries, an action that can only take place within 
a certain radius, real-life situations will only yield a fixed number 
of people within that radius that the heart rate signal could belong 
to. In this way we see that we have the beginning of a 
methodology that could potentially identify personal details of 
individuals on a massive scale. 

7. Conclusion 
With the growth of fitness wearables in the modern age, we find 
that an increased focus on privacy is in fact warranted. 
Vulnerabilities in systems allowing for eavesdropping of 
individual heart rates is now a reality. As we have seen, heartbeat 
data is an indicator of many more personal metrics than mere 
physical activity, some of which could be detrimental to an 
individual if the data fell into the hands of adversaries. 
We see that with a simple comparison algorithm, it is indeed 
possible to sharply narrow down the possibilities for individuals 
that produced a heart rate signal, implying that in an increasing 
number of cases, unwitting users are emanating data that is 
inherently labelled with their identity, data that is highly personal 
and potentially detrimental to them in a number of scenarios. 
We would like to explore how this algorithm could be further 
developed, and what steps we can take in the future towards 
ensuring a more private and secure system of health connectivity. 
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